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A viscous-inviscid interaction is produced when a compressible laminar boundary 
layer encounters a corner. The correct mathematical structure for such interactions 
at large Reynolds number is given by the asymptotic triple-deck theory. I n  the 
present work the triple-deck equations for supersonic and hypersonic flows are 
solved for both compression and expansion corners. Results are presented for a range 
of corner angles, including separated cases, and are compared with experimental data 
and with finite Reynolds number calculations based on an interacting boundary-layer 
model. 

1. Introduction 
When a supersonic stream flowing over a plane surface encounters a compressive 

disturbance of sufficient magnitude, the flow will separate from the wall. The point 
at which the boundary layer separates has been commonly observed to  occur well 
upstream of the disturbance, generating compression waves in the mainstream. Down- 
stream of separation the boundary layer develops as a free shear layer beneath which 
lies a region of slowly circulating fluid. If the compressive disturbance has been 
caused by a compression ramp, the free shear layer will reattach to the wall down- 
stream of the corner, generating additional compression waves in the external flow. 
This description applies to the situation in which the mainstream is uniform and the 
wall downstream of the corner is sufficiently long, and has been studied in detail 
experimentally by Chapman, Kuehn & Larsen (1  958) and ot'hers. The observation 
that the separation point lies well upstream of the corner contradicts the inherent 
nature of Prandtl's boundary-layer theory. However Crocco & Lees (1  952) have shown 
that coupling the pressure gradient of the external inviscid flow to the displacement 
thickness of the boundary layer permits upstream influence to be consistent with the 
boundary-layer equations. This concept led to the approximate integral methods of 
Lees & Reeves (1964) and others. On the basis of the original ideas of Lighthill (1950, 
1953), a rational self-consistent mathematical structure (dubbed the triple deck) has 
been developed for viscous-inviscid interacting flows by Stewartson & Williams 
(1969). In  independent papers an identical structure was arrived at also by Neiland 
(1969) and by Messiter (1970), and recently has been extended to include the case of 
a hypersonic mainstream by Brown, Stewartson & Williams (1975). Since its original 
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formulation, this analysis has been applied to  numerous viscous-inviscid interaction 
problems, many of which have been summarized by Stewartson (1974). 

The basic problem t o  be considered here is that  of a viscous compressible fluid 
flowing supersonically past a flat-platelramp combination a t  high Reynolds number 
Re. If the ramp angle a* is of order Re-*, a triple-deck structure develops within a 
longitudinal distance of order Re-8 centred about the platelramp juncture. Upstream 
of this region it is assumed that the flow is laminar and fully developed. Within the 
longitudinal interaction distance there are three distinct vertically scaled regions in 
which different physical processes dominate. Correspondingly, three separate scalings 
of the dependent and independent variables in each of the regions are necessary, 
resulting in the asymptotic equations which govern the physical processes involved 
in each of these three layers (or decks). The distinct solutions in the three decks are 
related by matching conditions, obtained by the method of matched asymptotic 
expansions. The mathematical formulation is outlined in Q 2, the numerical procedures 
are described in Q 3, and the results for compression and expansion ramps are discussed 
in $4. 

2. The triple-deck structure 
Stewartson’s triple-deck structure is depicted schematically in figure 1. The main 

deck has a transverse scale O(Re-4) and consists of fluid in the upstream boundary 
layer passing through the corner region in which the interaction takes place. Because 
the interaction region is short, the dominant mechanism in the main deck is an in- 
viscid turning of the upstream boundary layer. Thus the leading-order equations 
governing the flow in the main deck are simply those of vertical displacement of the 
streamlines. The upper deck has a length scale O(Re-9) in both the transverse and the 
longitudinal direction, and consists of fluid which is disturbed by flow in the inter- 
action region through outward propagation of Mach waves. Here the dominant pro- 
cess is irrotational as well as inviscid, so that t o  leading order the governing equations 
are the Prandtl-Glauert equations. The lower deck is characterized by viscous flow 
and has a vertical scale O(Re-8). Because this layer is extremely thin, the flow here 
is incompressible and, after appropriate rescaling of the variables, the leading-order 
equations are the usual incompressible boundary-layer equations, but with modified 
boundary conditions. The wall boundary conditions are the customary ‘no-slip ’ 
conditions, but the condition a t  the outer edge comes from matching to  the rota- 
tional inviscid main deck, rather than to  an irrotational inviscid outer flow. I n  turn, 
the main deck is matched to  the upper deck and thus assumes the passive role of 
transmitting streamline displacement from the lower deck to  the upper deck and 
pressure perturbations from the upper deck to  the lower deck. Hence the upper deck 
provides a relationship between the pressure and streamline displacement a t  the 
outer edge of the lower deck. 

As the asymptotic equations governing the flow in the main and upper decks permit 
simple analytical solutions, the problem is reduced to  solving the incompressible 
boundary-layer equations (with appropriate boundary conditions) in the lower deck. 
To first order the pressure and flow angle in the main deck are independent of distance 
from the wall. Consequently, matching the solutions in the three decks implies that  
the pressure/flow-angle relation a t  the base of the upper deck can be applied directly 
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FIGURE 1. Triple-deck structure for corner-flow problem (note: F = Re-Q). 

as a boundary condition at the top of the lower deck. For details of the argument, 
see Stewartson & Williams (1969).  The normal pressure gradient in the main deck 
appears in higher-order terms, as demonstrated by Brown & Williams (1975).  

Physical quantities are denoted by an asterisk, free-stream values by the subscript 
co and wall values by the subscript uj. The co-ordinate parallel to the plate is x* with 
origin a t  the leading edge and that transverse to the plate is y*. The distance from the 
leading edge to the corner is denoted x:. The streamwise and transverse velocity 
components are u* and v*, and p* is the pressure. Define the Reynolds number Re 
as pz  u*, x,*/,u*, and let E = Re-Q. Then, following Stewartson & Williams (1 969),  non- 
dimensional lower-deck variables are introduced as 

X = (x* -x,*)/e3a, (2.1 a )  

Y = y * / ~ 5 b ,  b = X: Cth-Q(M2, - l)-S(T;,/T*,)+, ( 2 . l b )  

(2.1 c )  

a = aa*/e2b, U = bu*/ed, V = av*/s3d, (2.1 d-f)  

( 2 . l d  

a = x , * ~ B h - % ( ~ 2 ,  - 1)-S (T;,/T*,)#, 

t = dt*/s2ab, d = x,*u*, CQh-j(M2, - 1)-3 (TZ/T*,)2, 

P = (p* -p*,)/E2c, c = p*, U*,2Cfh*(M2, - I ) - %  

Here a* is the ramp angle, C the Chapman-Rubesin constant (C = &T,* /p~  TZ), t* 
physical time and h has the value 0.33206 associated with the wall shear of the Blasius 
solution. The equations of motion for the lower deck then reduce to the classical 

aulax + av/aY = 0, (2 .2a)  boundary-layer form : 

au au au ap a2u 

at a~ ax ay2’ 
- + u z + v -  =--+- (2 .2b)  

where P is independent of Y .  Anticipating a time-dependent numerical scheme to 
obtain steady-state solutions for ramp flows, the unsteady lower-deck equations have 
been used. 
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The boundary conditions necessary for a complete statement of the problem are 
as follows. At the wall the traditional conditions apply: 

F=O, x40, 
Y =as, 9 3 0. 

U = V = O  on ( 2 . 3 a )  

The upstream boundary condition is obtained by matching to  the undisturbed profile, 
i.e. the compressible Blasius solution. Rewriting the Blasius solution in the non- 
dimensional lower-deck variables and taking the limit E -+ 0 for Y fixed yields the 
first-order matching condition: 

U - t Y  as X+-co.  ( 2 . 3 b )  

For Y + co, the lower-deck solution must match conditions at the base of the main 
deck. This requires 

lim ( U -  Y )  = -ry Pdc. ( 2 . 3 ~ )  
I--+ m - m  

See Stewartson & Williams (1969)  for details on the derivation of ( 2 . 3 ~ ) .  
Downstream of interaction, we require that the flow should return to  an undis- 

turbed state. This necessitates imposition of a downstream boundary condition to  
ensure uniqueness and prevent the appearance of spurious eigenfunctions. Once again 
matching to  the Blasius solution, we obtain 

U - + Y - a X  as X-++co,  ( 2 . 3 d )  

which completes the statement of the problem. 
It should be noted that it has been assumed that the magnitude of the corner angle 

la*\ is of order Re-*. For compression-ramp angles of this order, as long as reattach- 
ment occurs within the Re-3 length scaling, the downstream conditions are known and 
non-uniqueness problems due to  reversed flow as S + + co do not arise. For smaller 
angles, separation does not occur. On the other hand, if the angle is larger than 
O(Re-4) there evolves a more complex structure which has been analysed by Burggraf 
(1975) .  

Since its original formulation, triple-deck theory has been modified to describe 
hypersonic interacting flows by Brown et al. (1975). The analysis accounts for a 
hypersonic main deck and obtains the pressure-displacement relationship through 
the tangent-wedge approximation. While the non-dimensionalization of the depen- 
dent and independent variables (2 .1 )  is now altered, the lower-deck equations and 
boundary conditions remain intact with the exception of ( 2 . 3 ~ ) .  This becomes 

lim ( U -  17) = - Pdc-gP. (2.4) 
1-+m I T m  

The parameter (T is proportional t o  the conventional hypersonic interaction parameter 
x evaluated a t  the location of the upstream origin of interaction x,*: 

CT = (4y3h5A4x/[P(y - 1)2p$Si,])t ,  ( 2 . 5 ~ )  

where A = 2*385+ 1,721 l), x = M ~ C ~ / ( P , U ~ X ~ / , U ~ ) * ,  ( 2 . 5 b ,  c )  

P = [3Y - 1 + (Y + 1 )P01/((2Y)+ [(Y - 1 )  + (Y + 1 )Pol% ( 2 . 5 d )  
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Thus, for the lower-deck equations, u --f 0 corresponds to  the supersonic case. The 
reader is referred to  Brown et al. (1975) for a more detailed discussion of these results, 
including the modified definitions of the dependent a,nd independent variables. 

3. The numerical procedure 
Steady-flow solutions of ( 2 . 2 a ,  b )  were obtained as the large-time limit of the un- 

steady flow produced when the ramp angle is impulsively increased from zero to 01 
at time t = 0. The numerical scheme, to be briefly summarized here, is presented in 
more detail by Rizzetta (1976) .  Application of the wall boundary conditions is sim- 
plified if the geometry is transformed according t o  Prandtl's transposition theorem. 
For this purpose, the following variables are defined: 

2 = r ' -ax -H(X) ,  W = V - a U H ( S ) ,  (3.11, (3 .2 )  

where H ( X )  is the Heaviside step function. Under this transformation, the continuity 
and momentum equations are invariant (see Rosenhead 1963). 

The problem is now formulated in terms of the non-dimensional shear stress 
T = a U / a Y  = alJ/aZ such that the pressure is explicitly eliminated from the equa- 
tions. Differentiating the momentum equation with respect to Z and applying con- 
tinuity results in 

a7 a7 a7 a 2 7  - + U - + W - = -  
at a s  az az2 

(3 .3 )  

I n  terms of T ,  the boundary conditions a t  infinity simplify to  

~ - + l  as X--f+oo, O < Z < o o  (3 .4a)  

and ~ - - f l  as Z-too, - c o < S < c o .  (3 .4b )  

The pressure-displacement interaction condition is derived by differentiating (2 .4 )  
twice with respect to  X aiid eliminating the pressure by use of the wall compatibility 
condition (i.e. d P / d X  = [ a ~ / a Z ] , = , ) .  This yields 

where 6(X) is the Dirac delta function. The elliptic nature of the problem is evident 
from the appearance of the operator a2/aLY2 in the interaction condition, even though 
the lower-deck equations are parabolic and the upper-deck equations are hyperbolic. 

It should be noted that the transposition of variables in (3 .1 )  and (3 .2 )  produces a 
discontinuity in W at X = 0, as well as the delta function in ( 3 . 5 ) .  Numerically, these 
are treated by introducing a double array for W at X = 0 & and by integrating (3 .5 )  
over X from X = - + A X  to  X = + $ A X .  

The numerical method used to  solve the unsteady shear transport equation, which 
is given by Jenson, Burggraf & Rizzetta (1 975))  employs the equation 

Here the circumflex denotes eondition%at the previous time step. This scheme is 
semi-implicit in time, in that I? and TI' are evaluated a t  the previous time step, 
while the spatial derivatives of T are evaluated from backward differences in time. 
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More accurate central time differences would have been as easy to implement but the 
choice of backward differences was motivated by stability considerations. Since the 
unsteady solution was viewed solely as a computational device for obtaining the 
steady solution, the larger At-truncation error of this scheme is of no consequence. 
A time-explicit scheme was also tried, but was found to require much smaller time 
steps than the present scheme. 

The computation is initiated a t  time t = 0 with the uniform shear flow U = 8. 
Equation (3.6) is then used to march in time to the steady-state solution. All 2 de- 
rivatives are replaced by centred differences, but X derivatives are replaced by up- 
wind differences in order to maintain stability in reversed-flow regions. Consequently, 
the scheme is second-order accurate in 2, but only first-order accurate in X. This 
accuracy may be improved by Richardson extrapolation to zero mesh width, as will 
be discussed in more detail later. At interior points of the numerical mesh 7 is computed 
from (3.6). This requires solution of a tridiagonal mat3rix equation for &/at at, time t 
a t  each X station. Wall values of 7 are then coniputed from (3.5). The U velocity 
component is obtained by integrating 7 by the trapezoidal rule. W then follows from 
continuity employing centred differences except a t  X = 0, where forward and 
backward differences are used to allow for the discontinuity previously mentioned. 
Once the steady state has been achieved, P is computed by integration of the wall 
compatibility condition using the trapezoidal rule and noting that P -+ 0 as X -+ - co. 

To avoid the use of an excessively long computational mesh, the upstream and 
downstream conditions (3.4 a )  were replaced by asymptotic expressions which des- 
cribe the decay of 7 to unity as X -+ k co. Upstream, Stewartson & Williams (1969) 
have shown that 

7 - 1 -aleKxf”(Z), (3.7) 

where K is a known constant and f is a prescribed function. Numerically, this condi- 
tion is applied in the form 

using a centred difference between the first two upstream X stations. Downstream, 
the proper asymptotic form for 7 is given by Smith & Stewartson (1973) as 

&/ax = 4 7 -  1)  (3.8) 

7 - 1 +X-fq”(,), , = Z/X% (3.9) 

This condition is applied in the approximate form 

(3.10) 

which becomes exact as 3 -+ co with Z fixed. A centred difference was used to apply 
(3.10) between the last two downstream S stations. The use of asymptotic boundary 
conditions allowed great reduction in the extent of the computational mesh, parti- 
cularly downstream, where the algebraic decay is quite slow. 

It should be noted that the wall condition (3.5) is regarded as a central feature of 
the numerical procedure. In finite-difference form this is expressed as 

(3.11) 



(QZT’E) 
‘ 



542 

I I 

D .  P. Rizzetta, 0. R. Burggraf and R. Jenson  

I I 

4 

3 

P 2  

0 

I I I I a=3,5 

-20 - 10 0 10 70 
.Y 

FIGURE 3. Compression-ramp pressure distributions. u = 0. 
, separation point; 0, reattachment point. 

in the local flow direction from the corner (where the upper sign applies to unseparated 
cases, the lower sign to separated cases). For a = 2.0 the sign of the jump in dT,,/dX 
given by this analysis contradicts that indicated by the numerical results. This dis- 
crepancy may be attributed to the fact that for the conditions of this case (small T,, 

but large d P / d X  a t  the corner) the Goldstein region is extremely short, much shorter 
than the mesh size. For larger values of a the Goldstein region is longer, but still has 
not been resolved completely by the finite-difference calculations. However, the 
trends indicated by the analysis can be seen in the numerical solutions. The step-size 
studies reported below indicate that the accuracy of the solutions outside the Gold- 
stein region is not dependent on resolving the singularity. However, this singularity 
in T, = aU/aY is expected to be resolved on a length scale small compared with that 
of the triple deck. 
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Mesh size Mesh boundaries 
w I 

A 
\ 

U AX A 2  x m i n  x m a ,  Zma, 

1.0 0.3 0.3 - 9.6 8.1 14.7 
1.5 0.3 0.3 - 8.7 12.0 14.7 
2.0 0.3 0.3 - 10.2 13.5 17.7 
2.5 0.6 0.6 - 17.4 18.0 29.4 
3.0 0.6 0.6 - 23.4 24.0 41.4 
3.5 0.8 0.8 - 27.2 52.0 63.2 

TABLE 1. Computational mesh parameters for 
compression-ramp solutions shown in figures 2 and 3. 

Pressure distributions for the compression ramps are shown in figure 3. When 
separation occurs, an inflexion point is seen to  occur in the pressure distribution a t  
the corner (x = 0). As a increases above the value for incipient separation, the in- 
flexion develops into a constant-pressure plateau, which is quite evident for a = 3.5. 
The initial rise to the plateau level is pushed upstream with invariant shape as a 
increases, suggesting that as a + 00 the separation point is pushed upstream to in- 
finity; i.e. as a* increases beyond the Re-4 scale, the interaction length exceeds the 
Re-8 scale. Conversely, one may say that for large a the corner lies infinitely far 
downstream of the separation point on the Re-8 scale. For this case, Williams (1  975) 
has shown that the plateau pressure asymptotes to the value 1.8, which is seen to be 
in good agreement with the results for a = 3.5. 

Numerical mesh data for these cases are given in table 1. Convergence to the steady 
state was better for the smaller ramp angles. For a < 2.5, the terminal values of 
&/at were less than 3.3 x 10-4 everywhere in the mesh. For larger values of a, the 
convergence rate was much slower and the runs were terminated with the maximum 
value of &/at less than 7.4 x 1W4. Consequently, we view these large-a: results as 
qualitatively correct, but not quantitatively as precise as the lower-a cases. 

The effect of mesh size on compression-ramp solutions is indicated in figure 4, 
which shows the a = 2.5 wall shear-stress distributions for several values of AX. 
Themeshemployedfortheseresultscoveredtheregion - 17.4 < X < 1 8 , O  < Z < 29.4. 
A course mesh is seen to produce an overly large interaction region. Upstream of the 
corner, the greatest truncation error occurs in the region of maximum pressure 
gradient. Near the corner the error approaches zero, but grows rapidly in the down- 
stream region of large pressure gradient with algebraically slow decay in the terminal 
region of constant pressure. 

Because of the strong effect of mesh size, it is desirable to extrapolate the solution 
to zero mesh width, thereby converting the first-order accurate upwind-difference 
scheme to second-order accuracy. However, if the extrapolated solution is to be 
considered reliable, it must be shown that the computed results exhibit a linear de- 
pendence upon AX. Figure 5 shows plots of the wall shear stress us. AX at  several X 
stations for the case a = 2.5. As indicated, the extrapolation is quite linear for the 
three smallest values of AX except a t  the corner itself, where the truncation error is 
nonlinear as discussed in relation to (3.11). Thus linear extrapolation is felt to be 
valid a t  all points except the corner, where the extrapolated shear must be regarded 
with reservation. 
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FIGURE 4. Effect of step sizc A X  on compression-ramp wall shear distribution. = 0,  d = 2.5, 
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The extrapolated wall shear distribution for a = 2.5 is compared with the accurate 
free-interaction solution of Stewartson & Williams ( 1  969) in figure 6. The origin of 
both solutions is taken a t  the separation point. (Note that the origin is arbitrary in 
the Stewartson-Williams solution.) The agreement is excellent up to  and slightly 
downstream of the separation point, where the (hX)z-accurate centred-difference 
scheme of Stewartson & Williams becomes unstable. As was noted earlier, the up- 
stream pressure distribution and corresponding wall shear are pushed upstream with 
invariant shape as a increases above the incipient value. Hence, for the flow upstream 
of separation, this type of agreement with the Stewartson-Williams unique solution 
occurs for all separated ramp solutions (a > 1.57). 

Corner shear profiles for several values of a appear in figure 7. For a = 3.5, the 
constant shear near the wall coincides with the development of the pressure plateau, 
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FIGURE 6. Comparison of compression-ramp wall shear distribution with free-interaction solu- 
tion. 0, compression-ramp AS-extrapolated results, a = 2.5,  A 2  = O.G, AX = 0.2, 0.3; -, 
Stewartson-Williams solution. 
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FIGURE 7. Compression-ramp corner shear profiles for r = 0. 
0 ,  u = 0; 0, @ = 0. Mesh size as in table 1.  
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FIGURE 8. Effect of hypersonic parameter u on compression-ramp pres- distribution. a = 2-5, 
AX = AZ = 0.6. __ , g = 0 .  ---- , v = 1; , u = 2; 0 ,  separation point; 0, re- 
attachment point. 

consistent with the wall compatibility relation. A change in slope (near 7 = 0.2) 
occurs for large a. Behaviour of this type is suggestive of the formation of a more 
complicated flow structure such as the development of a large inviscid core down- 
stream of separation as described by Neiland (1 970). 

All of the foregoing results have been for the supersonic case, u = 0. The effect of 
the hypersonic parameter u upon the compression-ramp pressure distribution is 
indicated in figure 8.  Solutions for a = 2.5 and several values of u were generated 
using the same mesh sizes and mesh boundaries in each case. While the separation 
and reattachment points are only slightly affected, the pressure rise is seen to be 
delayed in X with increasing u. For u = 2, the pressure a t  the corner is about 80% 
of the (T = 0 value. The delayed pressure rise appears to be the predominant effect of 
u upon the lower-deck solution. This produced a corresponding variation in the wall 
shear distribution; corner shear profiles for these cases, however, were practically 
identical. 

At this point, it  is appropriate to ascertain how well the asymptotic (Re-too) 
lower-deck solutions approximate flows with finite Reynolds numbers. Werle & 
Vatsa (1973, 1974) have obtained solutions to the compressible boundary-layer 
equations for flow over compression ramps at  finite Reynolds numbers, including the 
induced pressure rise due to the displacement effect. In  order to confirm both their 
calculations and the present results a joint effort was carried out; the results are to 
be published separately (Burggraf et al. 1978) and are only summarized here. Only 
isolated comparisons between the triple-deck results and experimental data are 
possible, but Werle & Vatsa’s results compare quite favourably with experiment and 
with the Navier-Stokes solutions of Carter (1971). Details of their method will be 
omitted here for brevity, although it may be mentioned that for the purposes of this 
comparison the pressure-displacement relationship was obtained from simple-wave 
theory. 
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FIGURE 9. Comparison of compression-ramp pressure distribution with Werle-Vatsa solutions. 
u = 2.6, M ,  = 3.0, T, = 310" K, T, /T , ,  = 0.5. - , triple-deck solution; ----- , Werle- 
Vatsa solutions; 0 ,  separation point; 0, reattachment point. All data AX-extrapolated. 

For a systematic study of the effect of the Reynolds number, the case a = 2.5 was 
selected as representative of compression-ramp solutions which exhibit reversed- 
flow regions. As the interacting boundary-layer formulation does not permit solutions 
characterized by a single parameter (a), flow conditions were established for the 
problem. These were chosen as M, = 3.0, Pr = 0.71, T, = 310 OK and Tw/To, = 0.5. 
With these conditions, a family of solutions for varying Reynolds number was 
generated with a held constant, corresponding to variation of the physical ramp angle 
a*. All results were extrapolated to zero mesh width, as was the corresponding triple- 
deck solution. 

Figure 9 shows the comparison of the triple-deck pressure distribution with the 
Werle-Vatsa solutions for several Reynolds numbers, plotted in lower-deck variables.? 
The falling upstream pressure, especially evident for Re = lo4, is attributed to the 
weak-interaction solution of Lees & Probstein, which was used to initiate the Werle- 
Vatsa calculations. This characteristic is seen to diminish as the Reynolds number 
increases. These upstream displacement effects are neglected in the triple-deck 
formulation. The pressure everywhere upstream of the corner and the location of the 
separation point appear to approach the triple-deck values in the limit as Re + 00. 

However, at  finite Reynolds numbers, the pressure level at separation is not accu- 
rately predicted by the limiting theory. This tendency to overpredict the separation 
pressure appears to be a weakness of the first-order triple-deck theory with regard 
to engineering applications. The downstream triple-deck solution seems to be the 
limit (as Re --f 00) of the finite Reynolds number calculations, even a t  the corner and 
the reattachment point. 

At the high Reynolds numbers indicated in this comparison, any physical flow 
would be expected to be turbulent, whereas the results shown are based upon the 
assumption of laminar flow. While this assumption places a severe constraint upon 

t Actually the Werle-Vatsa computer program requires that the corner angle be slightly 
rounded; hence for consistency the triple-deck results in figure 9 were computed for the s&me 
rounded-corner geometry. 
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FIGURE 10. Comparison of compression-ramp pressure distribution with experiment. a = 2.5. 
-_--_ , inviscid pressure rise; - , AX-extrapolated numerical solution; 0, Lewis et al. 
experimental data, a* = lo", f i l m  = 4.0, Re = 68000, adiabatic wall. 

physical applications for adiabatic wall conditions, transition can be delayed to very 
high Reynolds numbers with cooled walls. Thus triple-deck solutions may be used to 
provide an adequate description for flows of practical interest. In  addition, compari- 
son with finite Reynolds number solutions indicates that the triple-deck scalings are 
correct and should be accounted for in computing viscous-inviscid interacting flows. 

A direct comparison of the triple-deck pressure distribution for a = 2-5 with the 
experimental data of Lewis, Kubota & Lees (1968) is made in figure 10. The test 
conditions correspond to adiabatic flow over a 10" ramp at Mm = 4.0 with Re = 6.8 x lo4 
based on the distance to the corner. For this choice of flow parameters, it was found 
that the linearized simple-wave boundary condition underpredicts the ramp pressure 
rise by about 20%. To correct for this effect, the numerical results were used to 
obtain the flow angle from linear theory, and the pressure was then deduced from the 
exact Prandtl-Meyer pressure/flow-angle relationship. As was noted earlier, the 
triple-deck solution appears to overpredict the pressure rise upstream of the corner. 
Downstream, the triple-deck solution is asymptotic to the inviscid pressure rise while 
the experimental data fall somewhat below this level. 

Expansion corners 
While the unsteady numerical procedure outlined in 0 3 has been formulated speci- 
fically to obtain reversed-flow solutions, the method may be applied intact to expan- 
sion corners by merely requiring a < 0. Stewartson (1970b) has previously con- 
sidered expansion corners for the supersonic case only. For la1 < 1 he obtained a 
linearized solution and for larger values of a employed an indirect method to solve 
the lower-deck equations. This technique established the upstream solution by pre- 
scribing a small pressure perturbation at  some value of X ahead of the corner and 
marching downstream to X = 0. At the corner, a value of a was assumed and a 
downstream solution generated. The value of a was then iterated upon until the 
downstream pressure attained a constant, level. Because of the marching technique 
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FIGURE 11. Expansion-ramp pressure distribution. --. Stewartson solution; 0, present 
numerical results (AX-extrapolated), CL = - 1.689, A 2  = 0.3, AX =. 0.1, 0.2. 

employed, Stewartson's numerical results were second-order accurate and subse- 
quently extrapolated to  zero mesh width, and thus are thought to  be quit.: reliable. 

Because of the favourable pressure gradient induced by an expansion. the flow is 
accelerated and produces a decrease in both the S and the Z extent of the interaction 
region as the expansion angle increases. Thus it is necessary to employ a reasonably 
fine numerical mesh if the details of the flow are to be properly resolved. As in the 
compression case, numerical mesh-size studies indicated that the results could be 
extrapolated to zero mesh width in order to improve accuracy. Figure 11 provides a 
comparison of extrapolated results with the accurate solution of Stewartson for the 
case a = - 1.689. The upstream solution of Stewartson was not given in his results. 
Downstream, his pressure distributions indicate the behaviour for several choices of 
a with a fixed upstream solution. The slight disagreement of the two results, particu- 
larly a t  the corner, is attributed to the higher accuracy in Stewartson's calculation. 

I n  figure 12, the pressure distributions for two values of a are given, with the non- 
dimensional pressure P normalized by a. This choice of variables allows a direct com- 
parison with the linearized solution of Stewartson (1970a) for la1 < 1. As a decreases 
(la1 increases), it is seen that the X extent of the interaction region collapses to the 
immediate vicinity of the corner. For small values of -a, the solution is very much 
like the linear result. I n  fact, the case a = - 1 has been omitted from the figure as it 
was virtually indistinguishable from the linear solution. For each of the cases shown 
the pressure a t  the corner is 0.7501. An analysis by Stewartson shows that the entire 
pressure drop occurs upstream of the corner for a + -co. Our numerical results for 
large negative a indicate a moderate trend in this direction, but truncation error was 
sufficiently large that  these results must be considered tentative and are not presented 
here. 

Corresponding wall shear distributions for these cases appear in figure 13. Here the 
perturbation of the wall shear from its undisturbed value has been normalized by a 
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x 
FIGURE 12. Expansion-ramp pressure distributions. u = 0. -, linearized solution; -----, 
a = - 2 .  _- , a = -3.  Numerical results AX-extrapolated; A 2  = 0.3, AzX = 0.3, 0.6. 

X 
FIGURE 13. Expansion-ramp wall shear distributions, u = 0. -, linearized solution; 

-----,a = - 2 . - -  , a = - 3. Numerical results AX-extrapolated; A 2  = 0.3, AxX = 0.3, 0.6. 

for comparison with the linear result. The distributions are again seen to vary slowly 
from the linear solution as la1 increases. As in the compression-ramp solutions, the 
slow downstream algebraic return to the undisturbed profile is evident. 

Figure 14 provides corner shear profiles for several negative values of a. The marked 
increase in the corner wall shear for increasing la1 is quite apparent, as well as the 
thinness of the lower deck. It is seen that the outer-edge value of r for a = - 3  is 
attained at  2 2: 3; by comparison, for a = + 3 the outer-edge value is reached at  
2 2: 24 (see figure 7). 

Turning to the hypersonic case, pressure distributions for a = - 1 for several 
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FIGURE 15. Effect of hypersonic parameter u on expansion-ramp pressure distribution. 
a = - 1 ,  A X  = A 2  = 0.6. -, u = 0 ;  (T = 1 ;  ---, fJ. = 2. 

values of CT are given in figure 15. As with the compression-ramp results, an increase 
in cr noticeably shortens the interaction zone upstream while extending it downstream. 
This results in a drastic change in the corner pressure, which for u = 2 is seen to be 
only slightly different from the undisturbed value. 

5. Conclusions 
An unsteady numerical technique has been formulated to solve the steady super- 

sonic and hypersonic triple-deck equations for flows past compression and expansion 
corners. Numerical results were extrapolated to zero mesh width to  obtain accurate 
solutions for both separating and non-separating flows. In  the case of supersonic flow, 
the results consist of a one-parameter family of solutions depending only upon the 
reduced corner angle a. Comparisons with both finite Reynolds number solutions and 
experiment indicate that first-order triple-deck theory, while correct asymptotically, 
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is only qualitatively accurate unless applied at very high Reynolds numbers. Never- 
theless, the scalings of the inner layer appear to be correct and should not be violated 
in numerical studies if the interaction region is to be properly described. 

The authors are grateful to the Office of Naval Research, which sponsored the re- 
search described here under Contract No. NOOOl4-67-A-0232-0014. 
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